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Time-varying synchronization of chaotic systems in the presence of system mismatch
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The problem of synchronization of two identical chaotic systems in the presence of system mismatch is
investigated in this article. The instantaneous mean square error~E! of the unidirectionally coupled synchro-
nization scheme is analyzed based on the Jacobian equation of the response system. It is shown that synchro-
nization based on a constant coupling parameter does not produce satisfactory performance. A synchronization
scheme is proposed here, and the time-varying coupling parameter sequence used in this new scheme is
obtained by minimizing the instantaneousE. Numerical simulations show that the proposed time-varying
synchronization method has smaller mean square synchronization error than the conventional approach based
on using a constant coupling parameter.
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I. INTRODUCTION

Since the first observation of two systems to exhibit u
predictable behavior yet evolve in perfect synchrony@1–5#,
this behavior has been the subject of a substantial numb
investigations because of the intrinsic interest in the idea
synchronization between chaotic motions, and its poten
application. Most of the research in the field of chaos s
chronization assumes that the drive system is connecte
the response by an ideal channel. However, there are alw
some mismatches between the drive and response syste
practical applications. The system mismatch, including co
ponent mismatch and channel noise, has been shown t
able to induce momentary large bursts away from synch
nization for some systems, and seriously limits the appli
tion of chaos synchronization@6–8#. The robustness and sta
bility of synchronization in the presence of these mismatc
are discussed in@9–11#. It is shown that synchronization
stability is related to the conditional Lyapunov expone
and transversal Lyapunov exponents of the chaotic sys
@12,13#.

However, recent research shows that stability is in
equate to guarantee a high-quality synchronization per
mance. A quantitative measure is needed to characterize
performance of a synchronization scheme. The mean sq
error ~E! between the states of the drive and response
tems is introduced in@14# to investigate the performance of
unidirectionally coupled synchronization system in the pr
ence of channel noise. An optimal constant coupling para
eter is then obtained by minimizing the mean square s
chronization error. It is shown that the optimal couplin
parameter does not only depend on the global Lyapunov
ponents, but also depends on the local Lyapunov expone

The unidirectionally coupled synchronization scheme
considered in this study. Not only is it easy to implement a
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does not require a numerical procedure to determine the
tem behavior in practical applications, but it is also shown
be a generalization of the Pecora and Carroll synchroniza
method@15#. While the conventional coupled synchroniz
tion method always uses a constant coupling parameter,
shown here that a time-varying coupled parameter should
used to achieve a good synchronization performance in
presence of system mismatches. In particular, we prop
using the instantaneousE to measure theE performance of
the Jacobian of the response system. It is found that
instantaneousE depends on the eigenvalues of the Jacob
matrix, which is usually time varying for a chaotic system
The time-varying nature of these eigenvalues indicates
instantaneousE varies with time and hence using a consta
coupling parameter is insufficient to minimize theE in syn-
chronization. In other words, the performance of the conv
tional synchronization method can be improved by usin
time-varying coupling parameter sequence. Based on this
servation, a new design approach for a time-varying synch
nization is proposed here. The coupling parameter at a
tain time is obtained by minimizing the instantaneousE at
that time instant. When there is no system mismatch,
conventional synchronization method is found to produce
same performance as the proposed time-varying appro
But when system mismatch exists, the time-varying synch
nization is superior to the optimal constant coupling para
eter approach.

The remainder of this article is organized as follows.
Sec. II, we introduce the problem of chaos synchronizat
with system mismatches. We then analyze the instantane
E of unidirectionally coupled synchronization, and propo
the time-varying coupling synchronization scheme. Sect
III gives the computer simulation to show the synchroniz
tion performance of the proposed approach. Concluding
marks are given in Sec. IV.

II. DESIGN METHOD FOR CHAOS SYNCHRONIZATION
IN NOISE

Suppose that the dynamic of the drive system is given

xn5f~xn21!, ~1!
©2004 The American Physical Society01-1
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where xn5@x1(n),x2(n),...,xd(n)#T is the d-dimensional
state vector at timen, f(xn)5@ f 1(xn), f 2(xn),...,f d(xn)#T are
continuous nonlinear functions, and ‘‘T’’ denotes the tran
pose of a vector or matrix.

To utilize a channel efficiently, a scalar driving signal
usually transmitted for synchronization. That is,

yn5hTxn1vn , ~2!

where h5@h1 ,h2 ,...,hd#T, vn is a Gaussian channel nois
process with zero mean and E(v iv j )5Rd i j >0, E~•! is the
mathematical expectation operator, andd i j is the Kronecker
delta function.

Chaos synchronization is to build a response system s
that it will follow the states of the drive system in~1! based
on the driving signalyn . In a unidirectionally coupled syn
chronization scheme, the dynamic of the response sys
can be described by

x̂n5f~ x̂n21!1k~yn2hTf~ x̂n21!!, ~3!

where x̂n5„x̂1(n),x̂2(n),...,x̂d(n)…T is the d-dimensional
state vector of the response system,k5(k1 ,k2 ,...,kd)T is a
d-dimensional vector which represents the coupling para
eter.

In the presence of channel noise, the ideal synchron
tion, that is, the states of response system equal to thos
drive system, cannot be fulfilled. There is always some s
chronization erroren5xn2 x̂nÞ0 as n→` in the response
system. An approximated synchronization is used to desc
this kind of synchronization behavior. Robustness and sta
ity of synchronization can be reached by using a suita
coupling parameter. The following mean square error~E! be-
tween the drive and response systems is used here to q
titatively describe the synchronization performance

E5 lim
n→`

1

n2n011 (
i 5n0

n

ei
Tei , ~4!

wheren0 is the length of the transient state.
Subtracting~3! by ~1!, the synchronization erroren can be

expressed as

en5f~ x̂n21!2f~xn21!1k~hTf~xn21!2hTf~ x̂n21!!1kvn .
~5!

Suppose that when the channel noise is small, the sync
nization error is small over the steady-state synchroniza
period. Linearizing~5! at the synchronized statex̂n gives

en5Fn21en212khTen211kvn5~ I d2khT!Fn21en211kvn ,
~6!

whereFn5(]f/]x)ux5 x̂n
is the Jacobian off(x) evaluated at

x̂n .
In the absence of channel noise, the noise termvn van-

ishes and the synchronization of the two chaotic system
realized once the normieni approaches 0 asn→` provided
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that an appropriate coupling parameterk is chosen. How-
ever, when there exists some channel noise, synchroniza
error is unavoidable.@16#

To describe the effect of coupling parameterk on the
synchronization performance at timem, the instantaneousE
of the response system is introduced. The instantaneoE
depicts the performance of the response system at timen by
analyzing another linear system whose characteristics are
same as those of the Jacobian equation at that time. Tha

em5~ I d2khT!Fm21
n em211kvm , ~7!

whereFm21
n has the same eigenvalues asFn21 . The instan-

taneousE at time n, En , is the mean square average of t
steady state in~7!,

En5 lim
M→`

(
m51

M

em
T em . ~8!

Expressing the instantaneous errorem in ~7! in terms of its
past histories fromm21 to m0 , we have

em5T~m,m0!em0
1 (

j 5m011

m

Tn~m, j !kv j , ~9!

where Tn(m, j )5) i 5 j 11
m (I2khT)Fi 21

n is the evolution op-
erator, which satisfies the following conditions:Tn(m,m)
5I andTn(m, j )50 for j .m.

After some algebraic manipulations,1 En in ~8! can be ex-
pressed as

En5 lim
m→`

R(
p51

d

(
q51

d

(
r 50

m

dpdp,qe2r ~LB,p1LC,q
n

!, ~10!

where dp5kTvB,p , dp,q5tr$kvB,p
T Id

q%, LB,p5 ln(lB,p)/2,
vB,p , andlB,p , p51,2,...,d, are the eigenvectors and eige
values of (Id2khT)(Id2khT)T, respectively, LC,q

n , q

51,2,...,d, is the eigenvalues ofFn21Fn21
T ,tr(•) denotes

trace of a matrix,Id denotesd3d identity matrix, andId
q

denotesd3d matrix whose elements are all zero excep
one in theqth position of the diagonal.

If LB,p1LC,q
n >0, En will tend to infinity. An approxi-

mated synchronization cannot be obtained. Thus it is ne
sary to make sure thatLB,p1LC,q

n is negative, and henceEn

can be simplified as

En5 (
p51

d

(
q51

d
Rdpdp,q

12e2~LB,p1LC,q
n

!
. ~11!

Equation~11! indicates thatEn depends onLC,q
n , which is

related to the eigenvalues of the Jacobian matrix of the

1The derivation is the same as that in@14# except that theFi 21 is
replaced byFi 21

n . The derivation is independent of the type
dynamical systems. For type I systems@15#, LC,q

n is a constant with
different n, while type II systems have time-varyingLC,q

n .
1-2
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sponse system at timen, Fn21 . As Fn215(]f/]x)ux5 x̂n21
,

that is,Fn21 is determined by the system equation and st
x̂n21 . As the system state of a chaotic system is an aperio
process, the Jacobian matrix andEn usually vary with time.

The E in ~5! is basically the average of the instantaneo
E over time. When time varying parameters that minimizeEn
at timen are used, we should have an improved synchro
zation performance if the eigenvalues of the Jacobian ma
of the system are indeed time varying. From~11!, the opti-
mal coupling parameterk at time n is related to the eigen
values of Fn21 . Since Fn21 depends on time in genera
using a single constant coupling parameter is therefore in
ficient to minimize theE at all time.

Based on the above analysis, a synchronization sys
with time-varying coupling parameter is proposed. The tim
varying coupling parameter is chosen to minimize theEn in
~11!. For the special case, thatLC,q

n in ~11! are independen
of Fn21 , the En is equivalent to MSE, and hence using
single coupling parameter is sufficient for an optimal sy
chronization.

The proposed time-varying synchronization scheme
summarized as follows.

Initial conditions,

x̂05E@ x̂0#. ~12!

For n51 to N, we calculate the

~1! Jacobian matrix,Fn21 ,
~2! eigenvectors and eigenvalues ofFn21Fn21

T ,
~3! minimization of theEn with respect to thek to obtain an

optimal coupling parameter,kn , and
~4! state vector estimation according tox̂n5f( x̂n21)

1kn(yn2hTf( x̂n21)).

It should be noted thatEn has a linear relationship with th
noise varianceR in ~11!. If there is no channel noise, i.e
R50, then En is equal to zero if the coupling paramet
satisfies the condition:LB,p1LC,q

n ,0. No matter what kind
of parameter, constant or time varying, is used,En andE will
be the same and equal to zero. It is why using a cons
coupling parameter is sufficient for the noise-free channe
conventional synchronization.

The method we proposed here can also be applied
continuous-time dynamical system. Using the similar deri
tion, a linear differential equation about the synchronizat
error corresponding to Eq.~6! can be obtained for a
continuous-time dynamical system. A state transition ma
is used to express its solution, which can be transformed
discrete-time map. The time-varying coupling parameter
then be obtained.

III. NUMERICAL SIMULATIONS

In this section, the proposed design method is applied
three chaos synchronization systems: the tent map, log
map, and henon map. In the following simulations, theE in
~4! is estimated by averaging the mean square synchron
tion error over 20 Monte Carlo trials with different initia
02620
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conditions. The synchronization error for each trial is o
tained using 105 time points after a transient state period
N05103.

A. The tent map

The tent map is given byxn5 f t(xn21 ,a)5a(12u2xn21
21u), whereaP@0,1# and xnP@0,1#. The response system
of the unidirectionally coupling synchronization scheme
the tent map is then given by

x̂n5 f t~ x̂n21 ,a!1kn~yn2 f t~ x̂n21 ,a!!, ~13!

where kn is the coupling parameter sequence obtained
minimizing theEn in ~11!. Without loss of generality, we us
h51 in ~2! andyn5xn1vn .

The En for the tent map can be expressed as

En5
Rkn

2

12Ft,n21
2 ~12kn!2 , ~14!

whereFt,n2152a sgn(1/22 x̂n21).
Minimizing theEn in ~14! with respect tokn , the optimal

coupling parameter sequence,kn , can be obtained

kn5
4a221

4a2 . ~15!

For the tent map, theEn is independent of thex̂n21 , the
coupling parameter designed by using the proposed me
is therefore a constant, which is equal to the optimal c
pling parameter@14#. Thus, the proposed method is equiv
lent to the optimal constant coupling parameter method
the tent map.

B. The logistic map

The logistic map is defined asxn5 f ,(xn21)54xn21(1
2xn21), wherexnP@0,1#. The response system in the un
directionally coupling synchronization scheme for the log
tic map is then given by

x̂n5 f ,~ x̂n21!1kn~yn2 f ,~ x̂n21!!, ~16!

wherekn is the coupling parameter sequence which is o
tained by minimizing theEn in ~11!. Without loss of gener-
ality, we seth51 in ~2! and henceyn5xn1vn .

The instantaneousE for the logistic map can be expresse
as

En5
Rkn

2

12F,,n21
2 ~12kn!2 , ~17!

whereF,,n2154(122x̂n21).
Minimizing theEn in ~17! with respect tokn , the optimal

coupling parameter sequence,kn , for the logistic map is
given by

kn5
F,,n21

2 21

F,,n21
2 . ~18!
1-3
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WhenF,,n21
2 is less than 1, the coupling parameter at timen

is negative. It should be noted that it is necessary to hav
non-negative coupling parameter to eliminate the effect
the initial condition error between the response and dr
systems@14#. kn is therefore set to zero whenF,,n21

2 ,1.
Figure 1 gives an example of the time-varying coupli

parameter sequence designed by using the proposed syn
nization method for the logistic map. The synchronizati
performance versus channel noise variance is shown in
2. For comparison, the synchronization performance of
response system with the optimal constant coupling par
eter is also given. The ratio of the output noise variance
the input noise variance is used in the figure to show
improvement. For the constant coupling parameter syst
the parameter value of 0.88 is shown to be optimal@14#, and
is used in our simulations. Figure 2 shows that the synch
nization system with the proposed design method always

FIG. 1. An example of the time-varying coupling parame
sequence for the logistic map.

FIG. 2. Performance comparison of the unidirectionally co
pling synchronization systems based on the logistic map using
optimal constant parameter method~dotted line withs! and the
proposed time-varying synchronization method~solid line withL!.
02620
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a smallerE than the optimal constant coupling parame
system for all levels of channel noise. While theE/R of the
optimal coupling parameter is 0.88, theE/R of the proposed
method is about 0.76 as the variance of channel is sma
than 1023.

C. The henon map

The henon map is given by

x1,n5121.4x1,n21
2 1x2,n21 , ~19!

x2,n50.3x1,n21 . ~20!

In this case, xn5@x1,n ,x2,n#T, x̂n5@ x̂1,n ,x̂2,n#T, and kn
5@k1,n ,k2,n#.

FIG. 3. An example of the time-varying coupling parame
sequence for the henon map~solid line with L for k1 ; dotted line
for k2).

FIG. 4. Performance comparison of the unidirectionally co
pling synchronization systems based on the henon map using
optimal constant parameter method~dotted line withs! and the
proposed time-varying synchronization method~solid line withL!.
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Let fh denotes the henon map, i.e.,xn5fh(xn21). The
response system for the henon map can be expressed a

x̂n5fh~ x̂n21!1kn~yn2hTfh~ x̂n21!!, ~21!

where x̂n5@ x̂1,n ,x̂2,n#T, kn5@k1,n ,k2,n#T is the coupling pa-
rameter sequence, andh5@h1 ,h2#T. Here,h5@1,0#T is used,
i.e., yn5x1,n1vn .

Figure 3 gives an example of the time-varying coupli
parameter sequence for the henon map. Both paramete
quences are obtained by minimizing theEn in ~11!. The syn-
chronization performance versus the noise variance is sh
in Fig. 4, and the performance of the optimal coupling p
rameter synchronization is also plotted for comparison.
the constant coupling parameter system, the parametersk1,n
50.88 andk2,n50 are used here which have been shown
be optimal @14#. Figure 4 shows that the synchronizatio
tt

r,

s

l,
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system with the coupling parameter using the proposed ti
varying design method has smallerE than the optimal cou-
pling parameter system for all noise variance levels. TheE/R
of the optimal coupling parameter is about 0.8, while theE/R
of the proposed method is about 0.71.

IV. CONCLUSION

The problem of synchronization of two identical chao
systems in the presence of system mismatches is investig
here. Based on the analysis of the instantaneousE of the
Jacobian, a novel synchronization approach with tim
varying coupling parameter is developed here. Compare
the constant parameter synchronization system, theE be-
tween the response and drive systems is shown to be red
by using a time-varying coupling parameter sequence
minimizes the instantaneousE.
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